Intro. to ODEs
Quiz 6 Solutions

1) Consider the following matrices.

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 0 & 2
\end{array}\right] \quad B=\left[\begin{array}{cc}
2 & -1 \\
-1 & 5 \\
3 & 0
\end{array}\right] \quad C=\left[\begin{array}{ccc}
1 & 0 & 1 \\
2 & -1 & 0 \\
1 & 1 & -2
\end{array}\right]
$$

If the products below exist, compute them. Otherwise, say that they are undefined.
a) $A B$

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 0 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 5 \\
3 & 0
\end{array}\right]=\left[\begin{array}{ll}
9 & 9 \\
4 & 1
\end{array}\right]
$$

b) $B A$

$$
\left[\begin{array}{cc}
2 & -1 \\
-1 & 5 \\
3 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 0 & 2
\end{array}\right]=\left[\begin{array}{ccc}
3 & 4 & 4 \\
-6 & -2 & 7 \\
3 & 6 & 9
\end{array}\right]
$$

c) $B C$

This is undefined since B is 3×2 while C is 3×3. Note that $C B$ would be a well-defined product for these two matrices!
d) $B^{T} C$

$$
\left[\begin{array}{ccc}
2 & -1 & 3 \\
-1 & 5 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 1 \\
2 & -1 & 0 \\
1 & 1 & -2
\end{array}\right]=\left[\begin{array}{ccc}
3 & 4 & -4 \\
9 & -5 & -1
\end{array}\right]
$$

2) Find the inverse of the following matrix by adjoining the identity matrix and reducing to RREF.

$$
M=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
2 & 2 & -1
\end{array}\right]
$$

$$
\left[\begin{array}{ccc|ccc}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
2 & 2 & -1 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{ccc|ccc}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 2 & 1 & -2 & 0 & 1
\end{array}\right]
$$

$$
\sim\left[\begin{array}{ccc|ccc}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & -1 & -2 & -2 & 1
\end{array}\right]
$$

$$
\sim\left[\begin{array}{ccc|ccc}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 2 & 2 & -1
\end{array}\right]
$$

$$
\sim\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 3 & 2 & -1 \\
0 & 1 & 1 & -2 & -1 & 1 \\
0 & 0 & 1 & 2 & 2 & -1
\end{array}\right]
$$

This gives us

$$
M^{-1}=\left[\begin{array}{ccc}
3 & 2 & -1 \\
-2 & -1 & 1 \\
2 & 2 & -1
\end{array}\right]
$$

